Integrated Likelihood Approach to Inference with Many Instruments
نویسنده
چکیده
I analyze a Gaussian linear instrumental variables model with a single endogenous regressor in which the number of instruments is large. I use an invariance property of the model and a Bernstein-von Mises type argument to construct an integrated likelihood which by design yields inference procedures that are valid under many instrument asymptotics and are asymptotically optimal under rotation invariance. I establish that this integrated likelihood coincides with the random-effects likelihood of Chamberlain and Imbens (2004), and that the maximum likelihood estimator of the parameter of interest coincides with the limited information maximum likelihood (liml) estimator. Building on these results, I then relax the basic setup along two dimensions. First, I drop the assumption of Gaussianity. In this case, liml is no longer optimal, and I derive a new, more efficient estimator based on a minimum distance objective function that imposes a rank restriction on the matrix of second moments of the reduced-form coefficients. Second, I consider minimum distance estimation without imposing the rank restriction and I show that the resulting estimator corresponds to a version of the bias-corrected two-stage least squares estimator.
منابع مشابه
Adaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملStatistical inference in dynamic panel data models
T.W. Anderson and his collaborators have made seminal contributions to inference with instrumental variables and to dynamic panel data models. We review these contributions and the extensive economic and statistical literature that these contributions spawned. We describe our recent work in these two areas, presenting new approaches to (a) making valid inferences in the presence of weak instrum...
متن کاملAn Integrated Approach of Fuzzy Quality Function Deployment and Fuzzy Multi-Objective Programming Tosustainable Supplier Selection and Order Allocation
The emergence of sustainability paradigm has influenced many research disciplines including supply chain management. It has drawn the attention of manufacturing companies’ CEOs to incorporate sustainability in their supply chain and manufacturing activities. Supplier selection problem, as one of the main problems in supply chain activities, is also combined with sustainable development where tr...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملA Prioritization Model for HSE Risk Assessment Using Combined Failure Mode, Effect Analysis, and Fuzzy Inference System: A Case Study in Iranian Construction Industry
The unavailability of sufficient data and uncertainty in modeling, some techniques, and decision-making processes play a significant role in many engineering and management problems. Attain to sure solutions for a problem under accurate consideration is essential. In this paper, an application of fuzzy inference system for modeling the indeterminacy involved in the problem of HSE risk assessm...
متن کامل